

Predicta Smart Monitoring (PSM)

Предиктивная аналитика и обслуживание: методология и подходы к внедрению

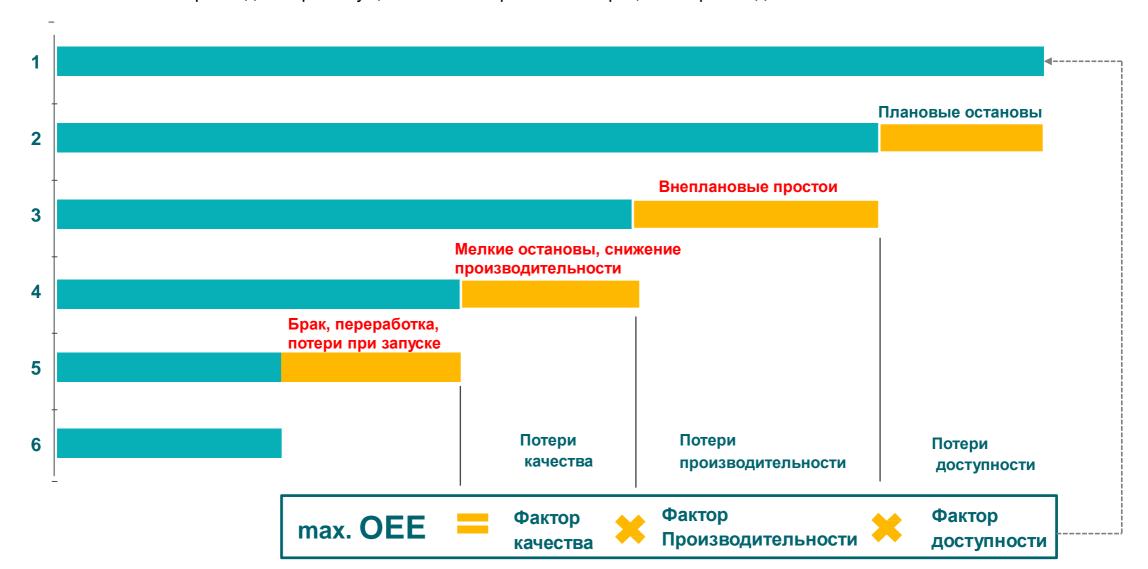
Выгоды от увеличения производства VS выгоды от экономии на ТОиР

Когда объем производства и объем обслуживания оборудования достиг определенного равновесия, встает вопрос, как увеличить производительность имеющегося оборудования?

НА ЧЕМ ФОКУС?

Выгоды от увеличения производства VS выгоды от экономии на ТОиР

Такую возможность предлагают технологии Индустрии 4.0 - предиктивное облуживание (PDM) и продление времени работы оборудования за счет снижения как плановых, так и внеплановых простоев

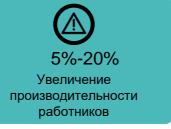

OEE = Overall Equipment Effectiveness (общая эффективность оборудования)

Общая эффективность оборудования (ОЕЕ)

Какие факторы ограничивают производительность оборудования?

В чем заключаются точки роста даже при кажущейся сбалансированности процессов производства и ТОиР?

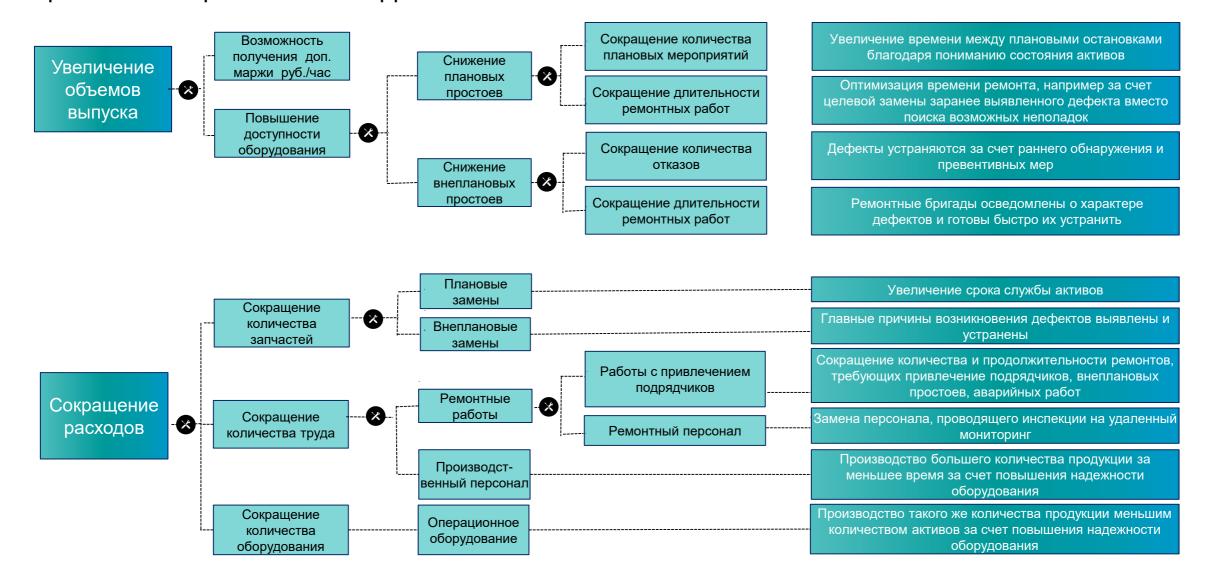
Как предиктивное обслуживание (PDM) влияет на рост эффективности работы оборудования



Появление технологий Индустрии 4.0, доступность хранилищ/вычислительных мощностей и продвинутых аналитических возможностей позволяют предсказывать поломки оборудования, снижать стоимость его обслуживания и продлевать жизнь активам

Основные преимущества предиктивного обслуживания:

- Более точное понимание состояния активов и оставшегося срока жизни оборудования ведет к снижению оттока ресурсов на его замену
- Уменьшение расходов на сверхурочную работу из-за снижения количества внеплановых ремонтов
- Оптимальная доступность квалифицированного технического персонала и операторов в условиях дефицита специалистов
- Лучшее управление запасными частями и предсказуемость отказов
- Лучший контроль над производственным/операционным планированием
- Улучшение сбалансированности труда/отдыха для технического персонала
- Улучшение безопасности труда из-за снижения количества аварий



Поток создания ценности

PREDICTA
L · A · B · S

Как предиктивная аналитика и обслуживание помогают реализовать точки роста и повышения эффективности

Применение PDM в промышленности Драйвер роста

Эффективность работы оборудования является ключом к прибыльности в обрабатывающей промышленности. Это означает максимизацию добавленной стоимости за счет увеличения объемов производства, качества и доступности и минимизацию затрат на ресурсы (например, энергии и запасных частей и материалов)

Каковы препятствия, по которым клиенты не проводят постоянную оптимизацию?

Ресурсы – у большинства клиентов нет необходимых ресурсов для постоянного контроля и анализа своих процессов и активов

Компетенция - у некоторых клиентов нет необходимого понимания в какой области, какие процессы и как можно оптимизировать, а низкая прозрачность процессов затрудняет принятие необходимых решений

PSM — программно-аппаратный комплекс мониторинга и предиктивной аналитики (для разных активов)

Пользовательский **уровень**

Сервисы и

приложения

Приложения

Триложения <u>ОЕМ</u>

вендоров

- ----

Приложения для обрабатывающей промышленности

станов и

конвейеров

- Анализ данных и диагностика
- Мониторинг состояния активов
- Предиктивное обслуживание
- Специализированные приложения для разных групп активов
- Гармонизированный интерфейс и инструменты анализа
- Анализирует работу оборудования разных производителей

Dashboard оборудования Аналитические Собственные приложения и приложения и ПО оборудования

Разработки

предприятия

Пакет управления активами и процессами

Управление тельностью

DCS жизненного

Аналитика

приводов и

редукторов

Предиктивная аналитика

Аналитика

двигателей и

насосов

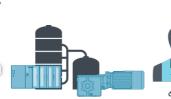
Аналитика производительности

Доступно

Пилот/MVP

- Безопасное хранение данных
- Доступ к данным и управлению из любой точки мира

Сбор данных с помощью «полевых» датчиков и сетей предприятия


IIoT платформа

Уровень предприятия

redicta Smart Platform

PSM — программно-аппаратная архитектура решения

В составе ПАК - линейка **собственных ІоТ датчиков*** на универсальных решениях, **протоколы передачи данных** и **программные приложения**, обеспечивающие требуемый функционал, быстрое развёртывание и удобное сервисное обслуживание

^{*} Возможна разработка индивидуальных модулей (на базе любых протоколов передачи данных) по требованиям заказчика

Преимущества предиктивной аналитики оборудования Ценностное предложение

Увеличение времени безотказной работы оборудования

- Предотвращение незапланированных простоев предприятия, прогнозируя отказы критического оборудования (на основе исторических и параметрических данных)
- Анализ работы технологического оборудования и выявление аномалии

Более высокая эффективность работы активов

- Своевременное и эффективное получение **истинной картины** технического **состояния и загрузки** вашего оборудования
- Обслуживание по состоянию вместо планово-предупредительных и аварийных ремонтов
- Возможность удаленного мониторинга для выявления проблем

Повышение точности в принятии решений

- Выявление взаимосвязей, на основе анализа больших данных, для более точных решений по дальнейшей эксплуатации и ремонтам
- Консолидация знаний и опыта профессионалов с большими данными и машинным обучением для повышения качества предиктивной аналитики
- Снижение нагрузки на опытных инженеров при ограниченных ресурсах.

Снижение расходов

Повышение надежности и эффективности (OEE)

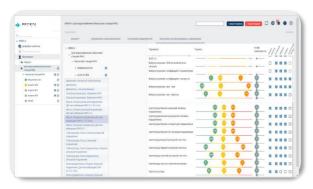
Настройка активов

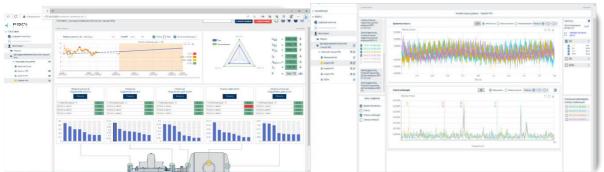
Активы полностью готовы к работе и оптимально используются

Smart данные

Интеллектуальная связка знаний и данных

Практичный и надежный инструмент для предиктивного мониторинга интегрирующий человеческий опыта/ноу-хау с возможностями машинного анализа


Предиктивная аналитика: Цели



Конфигурация и обучение

Предиктивная аналитика

Мониторинг

Обеспечение общей эффективности оборудования

Время безотказной работы

Увеличение времени безотказной работы оборудования за счет предотвращения простоев путем предварительного оповещения о проблемах

Эффективность операций

Повышение эффективности эксплуатации за счет предиктивного мониторинга

Точность решений

Повышение точности решений за счет выявления корреляций скрытых в данных

Big Data

Искусственный интеллект

Облачные технологии

Отчеты

IT безопасность

Что такое искусственный интеллект в предиктивной аналитике?

- 1. Накопление данных от сенсоров
- Аналитика данных и выявление закономерностей Создание моделей

2. Текущая модель обслуживания

Применяем модели и делаем выводы

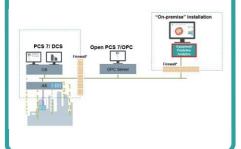
Создание новых моделей на основе текущего поведения оборудования

Искусственный интеллект

Программа, которая может чувствовать, рассуждать, действовать, адаптироваться

Машинное обучение

Программа обучается только при наличии большого массива данных


Глубокое обучение

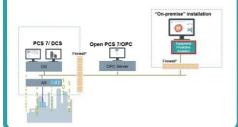
Программа, которая обучается на основе многослойных нейронных сетей



Интеграция данных

- Контроль процессов посредством анализа данных с датчиков
- ➤ Постоянный «realtime» контроль состояния оборудования
- **≻** прочее

Корреляция данных между связанными процессами датчиками



Корреляция Идентификация Понимание / Интерпретация Опыт / Hoy-хау / Интеграция

Устойчивость на всем жизненном цикле

Интеграция данных

- Настройка и контроль процесса сбора данных с датчиков
- ➤ Постоянный «realtime» мониторинг данных состояния оборудования
- **>** прочее

Идентификация

- ➤ Определите ключевые точки контроля, а также типы датчиков поддержки
- ➤ Определите комплексную модель контроля состояния для каждого конкретного оборудования "ДНК агрегата"

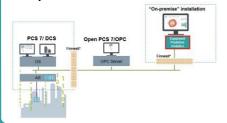
❖ На входе:

Исторические данные за определенный период времени (рекомендуемый ≥1 год), состоящие из временных рядов, сгенерированных датчиками

- установленными на оборудовании для контроля состояния
- установленными в рамках соответствующего производственного контекста/ процесса

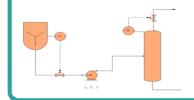
❖ На выходе:

- Целевые датчики контроля и мониторинга
- Обученные модели обслуживания для целей заблаговременного предупреждения и ремонта



Корреляция Идентификация Понимание / Интерпретация Опыт / Hoy-хау / Интеграция

Устойчивость на всем жизненном цикле


Интеграция данных

- ➤ Контроль процессов посредством анализа данных с датчиков
- ➤ Постоянный «realtime» контроль состояния оборудования
- **>** прочее

Понимание / Интерпретация

- ➤ Определение коррелирующих факторов для формирования соответствующих сообщений
- > Определение комплексной модели - «ДНК агрегата»

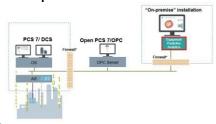
Риск-анализ

Предварительное оповещение об аномалиях

- ➤ На основе "ДНК агрегата", создать Библиотеку референсных показателей для оповещения об аномалиях
- □ Обучение /моделирование:

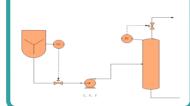
Описание эталонных "нормальных" состояний в прошлом

- ❖ Вход: ДНК агрегата
 - Набор временных периодов, характеризующих хорошее состояние оборудования
 - Исторические данные за этот период
- Выход: Модель библиотеки эталонных состояний
- **Мониторинг**: Оценка текущих рисков аварий
 - Вход: Модель эталонных состояний
 - Поток данных в реальном времени
- **Выход**: Оценка рисков по отклонениям от нормальных условий и предупреждения при высоком риске


Корреляция Идентификация Понимание / Интерпретация

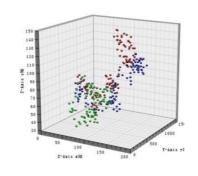
Опыт / Hoy-хау / Интеграция

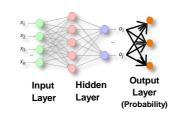
Устойчивость на всем жизненном цикле


Интеграция данных

- ➤ Контроль процессов посредством анализа данных с датчиков
- ➤ Постоянный «realtime» контроль состояния оборудования
- **>** прочее

Понимание / Интерпретация


- ➤ Определение коррелирующих факторов для формирования соответствующих сообщений
- >>Определение комплексной модели
- «ДНК агрегата»



Риск-Анализ

Обнаружение аномалий

➤ На основании "ДНК агрегата", создается библиотека референсных показателей для предупреждения об аномалиях

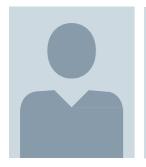
Интерактивное машинное обучение

- Исследование первопричин аварий
- Обратная связь для итеративного совершенствования модели
- Адаптация модели для жизненного цикла разного оборудования

Процедура внедрения у заказчика

Технико- экономическое обоснование(2 недели)¹

Запуск проекта (1-2 недели) ¹


Моделирование (2 - 4 недели) ¹

Развертывание & обучение (1 неделя) ¹

Оценка & консолидация (3 – 6 месяцев) ¹

- Необходимы исторические данные (лучше за 1 год)
- Аналитика и оценка данных
- Выбор ограниченного числа моделей для оценки состоятельности проекта
- Семинар для определения ожиданий и прояснения задач
- Определение ключевых датчиков и мест установки
- Определение периодов сбора и обработки данных
- Подготовка технологических карт оборудования «ДНК агрегатов»
- Обучение и валидация моделей
- Программное и аппаратное обеспечение, подготовка к развертыванию
- Развертывание приложений
- Анализ первых результатов на «живых» данных
- Консолидация моделей
- Обучение пользователей

- Непрерывно улучшение модели
- Определение перечня требуемых alert-сообщений

Эксперт процесса

Дата аналитик

Ключевые ресурсы «ПРЕДИКТЫ»

ресурсы Заказчика

Ключевые

Поддержка руководством

Эксперты предприятия

Инженеры разработчики ПО

Дорожная карта

Инженерный проект

Обследование площадки и создание инженерного проекта с выработкой индивидуализированной архитектуры

Сбор и накопление статистики

Организация централизованного хранения массива исторических данных с полевых систем

Внедрение ML

Создание автоматизированного прогностического сервиса на основе алгоритмов машинного обучения

Обвязка оборудования необходимыми датчиками и установка систем диагностики и анализа данных

Создание математический моделей процессов

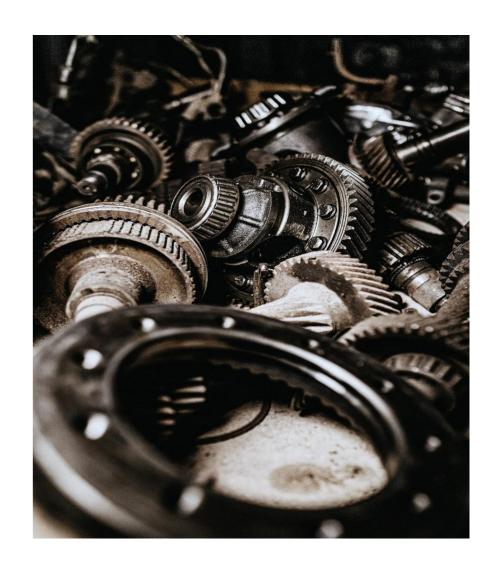
Создание диагностического аппарата и выдача прогнозов на основе экспертного мнения

Предписывающий сервис

Создание единого пространства оперативного контура планирования и реализации сервисных стратегий

Предиктивная аналитика Основные выводы

Предиктивная аналитика повышает общую эффективность оборудования (ОЕЕ)


Чтобы стать «умным» - искусственный интеллект нуждается в данных и предметных экспертах

Это переосмысление процессов – давайте работать в команде

Переход к предиктивному обслуживанию начинается с накопления объективных исторических данных

У нас есть ответы и решения

Мы работаем чтобы поддерживать Вас

Сравните уровень ваших систем с возможностями PSM

.

Уровень зрелости системы PdM

Предиктивная аналитика

Диагностика (выявление причин дефектов)

Возможности

- Контроль изменения динамических величин, характеризующих неисправность и прогноз достижения аварийного уровня
- о Расчет остаточного ресурса дефектного узла
- Выявление конкретных дефектов на основе комплексного анализа различных видов динамических данных (спектры вибрации и тока, магнитное поле, анализ сигнатур тока)

Выгоды

Повышение эффективности предприятия

- о Увеличение выпуска готовой продукции
- о Увеличение коэффициента готовности оборудования (OEE)
- Оптимизация загрузки активов
- о Планирование сроков и объемов ТОиР
- о Переход на более эффективные стратегии ТОиР
- о Экономия ресурсов

Прогнозирование

Level 1

evel 2

ротпозирование

Анализ данных

Обработка данных

Сбор данных

- о Выбор модели прогнозирования
- о Получение прогноза
- Оптимизация существующей стратегии
- Многофакторный анализ и кластеризация обработанных данных
- о Построение математических моделей и трендов
- о Экспертный анализ
- о Оценка данных на достоверность и состоятельность
- о Исключение случайной составляющей
- о Фильтрация и прореживание данных
- Получение максимально возможного количества независимых данных, представляющих ценность для оценки текущего состояния оборудования

Контроль состояния

• Оценка оборудования по шкале Норма-Предупреждение-Авария в соответствии с ГОСТ и ISO

Мониторинг

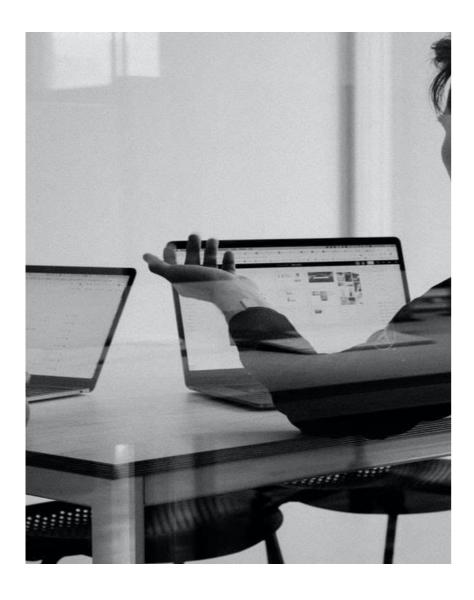
о Контроль изменения параметров во времени по результатам показаний вибрации, температуры, магнитного поля и т.д.)

Увеличение производительности труда

- о Рост производительности (изменение тех. процесса)
- о Исключение внеплановых простоев
- о Сокращение времени плановых простоев
- о Продление межсервисного интервала обслуживания

Безопасность

- о Повышение надежности эксплуатации оборудования
- о Предотвращение аварийных ситуаций


Ваша стратегия перехода к предиктивному обслуживанию

Level 2 Level 1 производительно_{сту} Предиктивная аналитика Инжиниринг и Накопление Автоматизация оборудования данных оснащение OEE Hocomprocts

Благодарим за внимание!

Ершов Андрей

Заместитель директора по цифровым продуктам и сервисам

Моб: +7 925 617 67 70

E-mail: ershov.a@predictalab.ru

Михаил Ведров

Представитель в г. Магнитогорск

Моб: +7 902 892-03-36

E-Mail: vedrov.m@predictalab.ru

MM-101.2

Модуль мониторинга состояния электромеханического оборудования

Модуль мониторинга состояния электромеханического оборудования - это компактный беспроводной датчик с питанием от батареи для основных параметров работы измерения электродвигателей

BLE

2,4 ГГц

до 650 кбит/с

встроенная

Основные характеристики:

Измерение вибрации:

число осей 3 ±2g диапазон измерения от 0,5 до 1600 Гц частотный диапазон

Измерение температуры:

от -30 до +85 °C диапазон измерения не более ±0.5 °C погрешность измерения

Измерение напряженности магнитного поля:

8 мТл диапазон измерения частотный диапазон 20 кГц нелинейность не более 1 %

Параметры радиоканала:

не менее 50 кбит/с* скорость обмена частотный диапазон 868 МГц тип антенны встроенная

Время автономной работы: не менее 5 лет** Рабочий температурный диапазон: от –30 до +85 °C Температура хранения: от 10 до +25 °C LS14500 (4 шт) Элемент питания: Крепление: винт М4 (2 шт)

Конструктивное исполнение:

IP66 степень защиты

габаритные размеры корпуса 114.6x63.8x31.7 mm 0.256 кг

V.IIoT

MM-103.2

Модуль мониторинга состояния вибрации

Модуль мониторинга состояния вибрации - это датчик беспроводной автономным питанием. предназначенный отслеживания состояния подшипников и редукторов. Модуль оснащен внешними пьезоакселерометрами

BLE

2,4 ГГц

до 650 кбит/с

встроенная

Основные характеристики:

Измерение вибрации:

частотный диапазон

количество внешних датчиков вибрации 2 одноосевых диапазон измерения ±50g частотный диапазон от 0,5 Гц до 10 кГц V.IIoT Параметры радиоканала: скорость обмена не менее 50 кбит/с*

тип антенны внешняя Время автономной работы: не менее 3 лет** Рабочий температурный диапазон: от –30 до +85 °C от 10 до +25 °C Температура хранения:

LS26500 (2 шт) Элемент питания: винт М4 (4 шт) Крепление:

Конструктивное исполнение:

IP66 степень защиты

габаритные размеры корпуса 114,6x63,8x55 mm

2 M длина кабеля масса

0.925 кг

868 МГц

^{*} Не менее 50 кбит/с при использовании одной полосы, не менее 100 кбит/с при использовании двух полос, не менее 200 кбит/с при использовании

^{**} Опрос датчиков и передача данных 1 раз в 30 минут. Время автономной работы зависит от температурного режима эксплуатации.

^{*} Не менее 50 кбит/с при использовании одной полосы, не менее 100 кбит/с при использовании двух полос, не менее 200 кбит/с при использовании

^{**} Опрос датчиков и передача данных 1 раз в 30 минут. Время автономной работы зависит от температурного режима эксплуатации.

MM-103.3

Модуль мониторинга состояния вибрации

Модуль мониторинга состояния вибрации - это миниатюрный беспроводной датчик с автономным питанием, предназначенный для отслеживания состояния подшипников и редукторов. Модуль оснащен встроенным трехосевым МЭМС-акселерометром.

BLE

2,4 ГГц

до 650 кбит/с

встроенная

Основные характеристики:

Измерение вибрации:

 число осей
 3

 диапазон измерения
 ±16g

 частотный диапазон
 до 6 кГц

Параметры радиоканала : V.IIoT

скорость обмена не менее 50 кбит/с* частотный диапазон 868 МГц

тип антенны встроенная

 Время автономной работы:
 не менее 3 лет**

 Рабочий температурный диапазон:
 от -30 до +85 °C

 Температура хранения:
 от 10 до +25 °C

 Элемент питания:
 LS26500 (1 шт)

Конструктивное исполнение:

Крепление:

степень защиты ІР66

габаритные размеры корпуса 81х42х42 мм

масса 0.17 кг

винт М6 (1 шт)

MM-104.4

Модуль мониторинга термосопротивлений

Модуль мониторинга термосопротивлений - это беспроводной автономный измерительный преобразователь, предназначенный для сбора показаний термосопротивлений.

встроенная

Основные характеристики:

Входы:

количество

схема подключения ТС двухпроводная или трехпроводная

тип TC 50M, Pt100

Параметры радиоканала: V.IIoT BLE

 скорость обмена
 не менее 50 кбит/с*
 до 650 кбит/с

 частотный диапазон
 868 МГц
 2,4 ГГц

тип антенны внешняя **Время автономной работы:** не менее 3 лет**

 Рабочий температурный диапазон:
 от -30 до +85 °C

 Температура хранения:
 от 10 до +25 °C

 Элемент питания:
 LS14550 (2 шт)

 Крепление:
 винт М4 (4 шт)

Конструктивное исполнение:

степень защиты ІР66

габаритные размеры корпуса 114,6х63,8х31,7 мм

масса 0,24 кг

^{*} Не менее 50 кбит/с при использовании одной полосы, не менее 100 кбит/с при использовании двух полос, не менее 200 кбит/с при использовании четырех полос.

^{**} Опрос датчиков и передача данных 1 раз в 30 минут. Время автономной работы зависит от температурного режима эксплуатации.

^{*} Не менее 50 кбит/с при использовании одной полосы, не менее 100 кбит/с при использовании двух полос, не менее 200 кбит/с при использовании четырех полос.

^{**} Опрос датчиков и передача данных 1 раз в 30 минут. Время автономной работы зависит от температурного режима эксплуатации.

MO-421.1

Модуль обработки аналоговых сигналов в реальном времени

Модуль обработки аналоговых сигналов в реальном времени позволяет проводить онлайн анализ качества сетевого напряжения, питающего электродвигатель, а также диагностировать его неисправности.

BLE

Основные характеристики:

Аналоговые входы:

количество

входной сигнал 0...40 MA

40...250 MA

0...10 B

Параметры радиоканала: V.IIoT

скорость обмена не менее 50 кбит/с*

до 650 кбит/с частотный диапазон 868 МГц 2,4 ГГц внешняя встроенная

тип антенны

Внешние интерфейсы:

RS-485 тип интерфейса количество 1 шт протокол обмена Modbus

скорость обмена не более 115200 бит/ с

± 15 B, 5 B Питание: Рабочий температурный диапазон: от -30 до +85 °C от 10 до +25 °C Температура хранения: Срок службы: не менее 5 лет винт М5 (4 шт) Крепление: Индикация: светодиодная

Конструктивное исполнение:

IP20 степень защиты

160x103x30,5 mm габаритные размеры корпуса

0.45 кг масса

MM-105.1

Модуль мониторинга давления

Модуль мониторинга давления - это беспроводное устройство с автономным питанием, предназначенное мониторинга технологических процессов в различных отраслях промышленности, энергетики и ЖКХ.

BLE

2,4 ГГц

до 650 кбит/с

встроенная

Основные характеристики:

Измерение давления:

диапазон измерений от 0...40 мбар до 0...10 бар диапазон температур измеряемой среды от -40 до +125 °C

основная погрешность 0,25% ДИ

V.IIoT Параметры радиоканала:

скорость обмена не менее 50 кбит/с*

частотный диапазон 868 МГц

тип антенны внешняя

Время автономной работы: не менее 3 лет** Рабочий температурный диапазон: от -30 до +85 °C от 10 до +25 °C Температура хранения: Элемент питания: LS26500 (2 шт) винт М4 (4 шт) Крепление:

Механическое элемента:

Конструктивное исполнение:

IP65 степень защиты

присоединение

114.6x63.8x55 mm габаритные размеры корпуса

2 M длина кабеля 0.75 кг масса

G1/2" EN 837

измерительного

^{*} Не менее 50 кбит/с при использовании одной полосы, не менее 100 кбит/с при использовании двух полос, не менее 200 кбит/с при использовании четырех полос.

^{*} Не менее 50 кбит/с при использовании одной полосы, не менее 100 кбит/с при использовании двух полос, не менее 200 кбит/с при использовании

^{**} Опрос датчиков и передача данных 1 раз в 30 минут. Время автономной работы зависит от температурного режима эксплуатации.

ШС-219.3

Шлюз сетевой

Шлюз сетевой предназначен для развертывания беспроводной сети. Обеспечивает зону радиопокрытия сети и прозрачную двунаправленную передачу данных между конечными устройствами и сервером. Позволяет реализовать масштабируемые системы сбора и обработки данных.

Основные характеристики:

Связь с сервером:

сыязы с серьером.				
технология	Ethernet	4G*		Wi-Fi*
тип антенны	-	внешняя*	*	внешняя
Связь с конечными устройствами:				
тип радиоканала	V.IIoT		BLE*	
количество каналов	2		-	
скорость обмена	не менее 50 кби	T/C***	до 650) кбит/с
частотный диапазон	868 МГц		2,4 ΓΓL	Ļ
тип антенны	внешняя		внешн	яя
Питание:	PoE, IEEE 802.3at			
Индикация:	светодиодная			
Рабочий температурный диапазон:	от −30 до +85 °C			
Температура хранения:	от 10 до +25 °C			
Срок службы:	не менее 5 лет			
Крепление:	на балки/мачты			
Конструктивное исполнение:				
степень защиты	IP66			
габаритные размеры корпуса	129 x 146,6 x 41,6	5 MM		
масса	0,6 кг			

^{*} Опционально.

ШС-218.1

Шлюз сетевой

Шлюз сетевой предназначен для развертывания беспроводной сети. Обеспечивает зону радиопокрытия сети и прозрачную двунаправленную передачу данных между конечными устройствами и сервером. Позволяет реализовать масштабируемые системы сбора и обработки данных.

Основные характеристики:

Связь с сервером:

интерфейсRS-485протокол обменаModbusскорость обменане более 115200 бит/ с

Связь с конечными устройствами:	
тип радиоканала	V.IIoT
количество каналов	1
скорость обмена	не менее 50 кбит/с*
частотный диапазон	868 МГц
тип антенны	внешняя
Питание:	512 B
Индикация:	светодиодная
Рабочий температурный диапазон:	от −30 до +85 °C
Температура хранения:	от 10 до +25 °C
Срок службы:	не менее 5 лет
Крепление:	на балки/мачты
Конструктивное исполнение:	
степень защиты	IP66

пень защиты іго

габаритные размеры корпуса 65 x 115,1 x 51,6 мм

масса 0,265 кг

^{**} Не входит в комплект поставки. Тип соединителя: SMA.

^{***} Не менее 50 кбит/с при использовании одной полосы, не менее 100 кбит/с при использовании двух полос, не менее 200 кбит/с при использовании четырех полос.

^{*} Не менее 50 кбит/с при использовании одной полосы, не менее 100 кбит/с при использовании двух полос, не менее 200 кбит/с при использовании четырех полос.